HSP27: References

1. Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111 (2009).

2. Ehrnsperger, M., Gräber, S., Gaestel, M. & Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221–229 (1997).

3. Jäättelä, M. Heat shock proteins as cellular lifeguards. Ann. Med. 31, 261–71 (1999).

4. Kappé, G. et al. Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. Biochim. Biophys. Acta 1520, 1–6 (2001).

5. Arrigo, A. P. Hsp27: novel regulator of intracellular redox state. IUBMB Life 52, 303–307 (2001).

6. Mehlen, P. et al. Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells. Biochem. J. 312 ( Pt 2, 367–375 (1995).

7. Fanelli, M. A., Cuello Carrion, F. D., Dekker, J., Schoemaker, J. & Ciocca, D. R. Serological detection of heat shock protein hsp27 in normal and breast cancer patients. Cancer.Epidemiol.Biomarkers.Prev. 7), 791–795 (1998).

8. Reports, B. & Kumar, T. C. A. Shock and DNP in D r o s o p h i l a. 55, 571–573 (1962).

9. De Maio, A., Santoro, M. G., Tanguay, R. M. & Hightower, L. E. Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: a new view of biology, a
new society, and a new journal. Cell Stress Chaperones 17, 139–143 (2012).

10. Tissières, a, Mitchell, H. K. & Tracy, U. M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389–98 (1974).

11. Arrigo, A. Hapter 2. (2007).

12. De Jong, W. W., Caspers, G. J. & Leunissen, J. a. Genealogy of the alpha-crystallin–small heat-shock protein superfamily. Int. J. Biol. Macromol. 22, 151–62 (1998).

13. Kappé, G. et al. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8, 53–61 (2003).

14. Landry, J., Chrétien, P., Lambert, H., Hickey, E. & Weber, L. a. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol. 109, 7–15 (1989).

15. Papp, E., Nardai, G., Söti, C. & Csermely, P. Molecular chaperones, stress proteins and redox homeostasis. Biofactors 17, 249–57 (2003).

16. Jäättelä, M. Heat shock proteins as cellular lifeguards. Ann. Med. 31, 261–271 (1999).

17. Csermely, P. & Vígh, L. Molecular Aspects of the Stress Response : Chaperones , Membranes.

18. Garrido, C. et al. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5, 2592–2601 (2006).

19. Jäättelä, M. Escaping cell death: survival proteins in cancer. Exp. Cell Res. 248, 30–43 (1999).

20. Jaattela, M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–2756 (2004).

21. M., H. sHsps and their role in the chaperone network. Cell Mol Life Sci. 59, 1649–1657 (2002).

22. Gusev, N. B., Bogatcheva, N. V & Marston, S. B. Structure and Properties of Small Heat Shock Proteins ( sHsp ) and Their Interaction with Cytoskeleton Proteins. 67, (2002).

23. Ad, S. et al. Heat shock protein 27 gene : chromosomal and molecular location and relationship to Williams syndrome . 22, 2003 (2003).

24. Hochberg, G. K. a et al. The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc. Natl. Acad. Sci. U. S. A. 111, E1562–70 (2014).

25. Mahmood, T., Safdar, W., Abbasi, B. H. & Naqvi, S. M. S. An overview on the small heat shock proteins. 9, 927–939 (2010).

26. Sun, Y. & MacRae, T. H. The small heat shock proteins and their role in human disease. FEBS J. 272, 2613–27 (2005).

27. Waters, E. R. The Molecular Evolution of the Small Heat-Shock Proteins in Plants. Genetics 141, 785–95 (1995).

28. ROSALIND KIM*, KYEONG KYU KIM, HISAO YOKOTA, A. S.-H. K. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA 95, 9129–9133 (1998).

29. Rogalla, T. et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J. Biol. Chem. 274, 18947–18956 (1999).

30. Lee GJ1, Pokala N, V. E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem. 270, 10432–8. (1995).

31. Primm, T. P. Mycobacterium tuberculosis 16-kDa Antigen (Hsp16.3) Functions as an Oligomeric Structure in Vitro to Suppress Thermal Aggregation. J. Biol. Chem. 271, 7218–7223 (1996).

32. Haley DA1, Bova MP, Huang QL, Mchaourab HS, S. P. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol. 298, 261–72 (2000).

33. Haley DA1, Horwitz J, S. P. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J Mol Biol. 277, 27–35 (1998).

34. Kim KK, Kim R., K. S. Crystal structure of a small heat-shock protein. Nature. 394, 595–9 (1998).

35. Bruey, J. M. et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2, 645–652 (2000).

36. Sugiyama, Y. et al. CELL BIOLOGY AND METABOLISM : Muscle Develops a Specific Form of Small Heat Shock Protein Complex Composed of Myogenic Differentiation Muscle Develops a Specific Form of Small Heat Shock Protein Complex Composed of MKBP / HSPB2 and HSPB3 during Myogenic D. (2000).

37. http://www.uniprot.org/uniprot/?query=HspB1&sort=score.

38. Mymrikov, E. V, Seit-Nebi, A. S. & Gusev, N. B. Large potentials of small heat shock proteins. Physiol. Rev. 91, 1123–59 (2011).

39. Taylor, R. P. & Benjamin, I. J. Small heat shock proteins: A new classification scheme in mammals. J. Mol. Cell. Cardiol. 38, 433–444 (2005).

40. Verschuure, P., Tatard, C., Boelens, W. C., Grongnet, J.-F. & David, J. C. Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur. J. Cell Biol. 82, 523–530 (2003).

41. Franck, E. et al. Evolutionary diversity of vertebrate small heat shock proteins. J. Mol. Evol. 59, 792–805 (2004).

42. Narberhaus, F. ␣ -Crystallin-Type Heat Shock Proteins : Socializing Minichaperones in the Context of a Multichaperone Network. 66, 64–93 (2002).

43. Gribaldo, S., Lumia, V., Creti, R. & Conway, E. Discontinuous Occurrence of the hsp70 ( dnaK ) Gene among Archaea and Sequence Features of HSP70 Suggest a Novel Outlook on Phylogenies Inferred from This Protein. 181, 434–443 (1999).

44. Himmelreich, R. et al. Complete Sequence Analysis of the Genome of the Bacterium Mycoplasma Pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

45. Mu, M. et al. Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. 48, 39–48 (1999).

46. Fischer, H. M. et al. One member of. 12, 2901–2912 (1993).

47. Guglielmi, G., Mazodier, P., Thompson, C. J. & Davies, J. A Survey of the Heat Shock Response in Four Streptomyces Species Reveals Two groEL-Like Genes and Three GroEL-Like
Proteins in Streptomyces albus. 173, 7374–7381 (1991).

48. Kaneko, T. et al. Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions. DNA Res. 3, 109–136 (1996).

49. Ogawa, J. & Long, S. R. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev. 9, 714–729 (1995).

50. Scharf, K., Siddique, M. & Vierling, E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing ␣ -crystallin domains ( Acd proteins ). 6, 225–237 (2001).

51. MacRae, T. H. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell. Mol. Life Sci. 57, 899–913 (2000).

52. Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).

53. Scarpeci, T. E., Zanor, M. I. & Valle, E. M. Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal. Behav. 3, 856–857 (2008).

54. Waters, E. R. The Molecular Evolution of the Small Heat-Shock Proteins in Plants. Genetics 141, 785–95 (1995).

55. Waters, E. R. & Rioflorido, I. Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J. Mol. Evol. 65, 162–174 (2007).

56. Waters, E. R. & Vierling, E. Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc. Natl. Acad. Sci. U. S. A. 96, 14394–14399

57. Lee, U. et al. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J. 49, 115–127 (2007).

58. Mymrikov, E. V, Seit-Nebi, A. S. & Gusev, N. B. Large potentials of small heat shock proteins. Physiol. Rev. 91, 1123–59 (2011).

59. Fischer, U., Jänicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76–100 (2003).

60. Paul, C. et al. Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Exp. Cell Res. 316, 1535–1552 (2010).

61. Havasi, A. et al. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J. Biol. Chem. 283, 12305–12313 (2008).

62. Stetler, R. A., Gao, Y., Signore, A. P., Cao, G. & Chen, J. HSP27: mechanisms of cellular protection against neuronal injury. Curr. Mol. Med. 9, 863–872 (2009).

63. Chauhan, D. et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102, 3379–3386 (2003).

64. Charette, S. J. & Landry, J. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann. N. Y. Acad. Sci. 926, 126–131 (2000).

65. Charette, S. J., Lavoie, J. N., Lambert, H. & Landry, J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol. Cell. Biol. 20, 7602–7612 (2000).

66. Arya, R., Mallik, M. & Lakhotia, S. C. Heat shock genes – integrating cell survival and death. J. Biosci. 32, 595–610 (2007).

67. Jakob, U., Gaestel, M., Engel, K. & Buchner, J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–20 (1993).

68. Guay, J. et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J. Cell Sci. 110 ( Pt 3, 357–368 (1997).

69. Lavoie, J. N., Hickey, E., Weber, L. A. & Landry, J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem.
268, 24210–24214 (1993).

70. Zantema, A., Verlaan-De Vries, M., Maasdam, D., Bol, S. & van der Eb, A. Heat shock protein 27 and alpha B-crystallin can form a complex, which dissociates by heat shock. J. Biol. Chem. 267, 12936–12941 (1992).

71. Bova, M. P., McHaourab, H. S., Han, Y. & Fung, B. K. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275, 1035–1042 (2000).

72. Bukach, O. V., Glukhova, A. E., Seit-Nebi, A. S. & Gusev, N. B. Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim. Biophys. Acta – Proteins Proteomics 1794, 486–495 (2009).

73. Stromer, T., Ehrnsperger, M., Gaestel, M. & Buchner, J. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 278, 18015–18021 (2003).

74. Markov, D. I., Pivovarova, A. V., Chernik, I. S., Gusev, N. B. & Levitsky, D. I. Small heat shock protein Hsp27 protects myosin S1 from heat-induced aggregation, but not from thermal denaturation and ATPase inactivation. FEBS Lett. 582, 1407–1412 (2008).

75. Pivovarova, A. V, Chebotareva, N. A., Chernik, I. S., Gusev, N. B. & Levitsky, D. I. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. FEBS J. 274, 5937–5948 (2007).

76. McHaourab, H. S., Godar, J. A. & Stewart, P. L. Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48, 3828–3837 (2009).

77. McLean, P. J. et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J. Neurochem. 83, 846–854 (2002).

78. Outeiro, T. F. et al. Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem. Biophys. Res. Commun. 351, 631–638 (2006).

79. Nemes, Z., Devreese, B., Steinert, P. M., Van Beeumen, J. & Fésüs, L. Cross-linking of ubiquitin, HSP27, parkin, and alpha-synuclein by gamma-glutamyl-epsilon-lysine bonds in Alzheimer’s neurofibrillary tangles. FASEB J. 18, 1135–1137 (2004).

80. Shinohara, H., Inaguma, Y., Goto, S., Inagaki, T. & Kato, K. αB crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J. Neurol. Sci. 119, 203–208 (1993).

81. Wilhelmus, M. M. M. et al. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res. 1089, 67–78 (2006).

82. Shimura, H., Miura-Shimura, Y. & Kosik, K. S. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J. Biol. Chem. 279, 17957–17962 (2004).

83. Hollander, J. M. et al. Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation 110, 3544–3552 (2004).

84. Yoshida, K. et al. Translocation of HSP27 and MKBP in ischemic heart. Cell Struct. Funct. 24, 181–185 (1999).

85. Martin-Ventura, J. L. et al. Biological significance of decreased HSP27 in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 1337–1343 (2006).

86. Schimke, I. et al. Increased level of HSP27 but not of HSP72 in human heart allografts in relation to acute rejection. Transplantation 70, 1694–1697 (2000).

87. Tanonaka, K., Yoshida, H., Toga, W., Furuhama, K. & Takeo, S. Myocardial heat shock proteins during the development of heart failure. Biochem. Biophys. Res. Commun. 283, 520–525 (2001).

88. Ciocca, D. R., Oesterreich, S., Chamness, G. C., McGuire, W. L. & Fuqua, S. A. Biological and clinical implications of heat shock… [J Natl Cancer Inst. 1993] – PubMed result. J. Natl. Cancer Inst. 85, 1558–70 (1993).

89. Ciocca, D. R. & Calderwood, S. K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86–103 (2005).

90. Bausero, M. A. et al. Silencing the hsp25 gene eliminates migration capability of the highly metastatic murine 4T1 breast adenocarcinoma cell. Tumour Biol. 27, 17–26 (2006).

91. Ciocca, D. & Calderwood, S. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86–103 (2005).

92. Holschneider, C. H. & Berek, J. S. Ovarian cancer: epidemiology, biology, and prognostic factors. Semin. Surg. Oncol. 19, 3–10 (2000).

93. Assimakopoulou, M., Sotiropoulou-Bonikou, G., Maraziotis, T., Papadakis, N. & Varakis, I. Microvessel density in brain tumors. Anticancer Res 17, 4747–53 ST  – Microvessel density in
brain tumors (1997).

94. Fuqua, S. A. et al. Heat shock proteins and drug resistance. Breast Cancer Res. Treat. 32, 67–71 (1994).

95. Huang, Q. et al. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clin. Chem. Lab. Med. 48, 263–269 (2010).

96. Vargas-Roig, L. M., Gago, F. E., Tello, O., Aznar, J. C. & Ciocca, D. R. Heat shock protein expression and drug resistance in breast cancer patients treated with induction
chemotherapy. Int.J.Cancer 79, 468–475 (1998).

97. Ciocca, D. R., Arrigo, A. P. & Calderwood, S. K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch. Toxicol. 87, 19–48 (2013).

98. Arrigo, A.-P. & Gibert, B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins. Cancers (Basel). 6, 333–65 (2014).

99. Hsu, H.-S. et al. Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 117, 1516–1528 (2011).

100. Heinrich, J.-C., Tuukkanen, A., Schroeder, M., Fahrig, T. & Fahrig, R. RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J. Cancer Res. Clin. Oncol. 137, 1349–1361 (2011).

101. Chauhan, D. et al. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res. 63, 6174–6177 (2003).

102. Baylot, V. et al. OGX-427 inhibits tumor progression and enhances gemcitabine chemotherapy in pancreatic cancer. Cell Death Dis. 2, e221 (2011).

103. Zhong, B., Lama, R., Smith, K. M., Xu, Y. & Su, B. Design and synthesis of a biotinylated probe of COX-2 inhibitor nimesulide analog JCC76. Bioorganic Med. Chem. Lett. 21, 5324–5327 (2011).

104. Kamada, M. et al. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol. Cancer Ther. 6, 299–308 (2007).

105. Sherman M1, M. G. Heat shock proteins in cancer. Ann N Y Acad Sci. 1113, 192–201 (2007).

106. SK., C. HSF1, a versatile factor in tumorogenesis. Curr Mol Med. 12, 1102–7 (2012).

107. Arrigo, A.-P. et al. Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett. 581, 3665–74 (2007).

108. Arrigo, A.-P. & Gibert, B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins. Cancers (Basel). 6, 333–65 (2014).

109. Shiota, M. et al. Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res. 73, 3109–19 (2013).

110. Cell, S., Mehlen, P., Schulze-osthoff, K. & Arrigo, A. Cell Biology and Metabolism : Small Stress Proteins as Novel Regulators of Apoptosis : HEAT SHOCK PROTEIN 27 BLOCKs FAS / APO-1-
AND Small Stress Proteins as Novel Regulators of Apoptosis. (1996).

111. Kamradt, M. C., Chen, F. & Cryns, V. L. The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting
its autoproteolytic maturation. J. Biol. Chem. 276, 16059–63 (2001).

112. Garrido, C., Brunet, M., Didelot, C., Schmitt, E. & Kroemer, G. ES RIB. 5, 2592–2601 (2006).

113. Garrido, C. et al. Heat Shock Protein 27 Enhances the Tumorigenicity of Immunogenic Rat Colon Carcinoma Cell Clones Heat Shock Protein 27 Enhances the Tumorigenicity Carcinoma Cell Clones1 Rat Colon. 5495–5499 (1998).

114. Arrigo, Â. et al. Di € erential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. 4855–4863 (2000).

115. Gibert, B. et al. Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 30, 3672–3681 (2011).

116. Gibert, B. et al. Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br. J. Cancer 107, 63–70 (2012).

117. Lemieux P, Oesterreich S, Lawrence JA, Steeg PS, Hilsenbeck SG, Harvey JM, F. S. The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells. Invasion Metastasis. 17, 113–23. (1997).

118. Manuscript, A. & Growth, T. NIH Public Access. b, 243–251 (2007).

119. Arrigo, A.-P. Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett. 587, 1959–69 (2013).

120. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. & Ciocca, D. R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci. 31, 164–172 (2006).

121. Bausero, M. A., Page, D. T., Osinaga, E. & Asea, A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumor Biol. 25, 243–251 (2004).

122. Gibert, B. et al. Knock down of heat shock protein 27 (HspB1) induces degradation of several putative client proteins. PLoS One 7, e29719 (2012).

123. Arrigo AP1, G. B. Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperthermia. 5, 409–22 (2013).

124. Wei, L. et al. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Res
13, R101 (2011).

125. Straume, O. et al. Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer. Proc. Natl. Acad. Sci. U. S. A. 109, 8699–704 (2012).

126. Fujita, R., Ounzain, S., Wang, A. C. Y., Heads, R. J. & Budhram-Mahadeo, V. S. Hsp-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localisation following drug treatment. Cell Stress Chaperones 16, 427–39 (2011).

127. Oesterreich S1, Schunck H, Benndorf R, B. H. Cisplatin induces the small heat shock protein hsp25 and thermotolerance in Ehrlich ascites tumor cells. Biochem Biophys Res Commun. 180,
243–8 (1991).

128. Schäfer C1, Seeliger H, Bader DC, Assmann G, Buchner D, Guo Y, Ziesch A, Palagyi A, Ochs S, Laubender RP, Jung A, De Toni EN, Kirchner T, Göke B, Bruns C, G. E. Heat shock protein 27 as a prognostic and predictive biomarker in pancreatic ductal adenocarcinoma. J Cell Mol Med. 1, (2012).

129. Mori-iwamoto, S. et al. Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. 1345–1350 (2007).

130. Nakashima M1, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Itani M, Yoshioka T, Matsushima-Nishiwaki R, Hirose Y, Kozawa O, M. H. Phosphorylation status of heat shock protein 27 plays
a key role in gemcitabine-induced apoptosis of pancreatic cancer cells. Cancer Lett. 313, 218–25 (2011).

131. Tweedle EM1, Khattak I, Ang CW, Nedjadi T, Jenkins R, Park BK, Kalirai H, Dodson A, Azadeh B, Terlizzo M, Grabsch H, Mueller W, Myint S, Clark P, Wong H, Greenhalf W, Neoptolemos JP, Rooney PS, C. E. Low molecular weight heat shock protein HSP27 is a prognostic indicator in rectal cancer but not colon cancer. Gut. 59, (2010).

132. Ciocca, D. R. et al. Response of Human Breast Cancer Cells to Heat Shock and Chemotherapeutic Drugs Response of Human Breast Cancer Cells to Heat Shock and Chemotherapeutic. 3648–3654 (1992).